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Abstract
The dynamics associated with a measurement-based master equation for
quantum Brownian motion are investigated. A scheme for obtaining time
evolution from general initial conditions is derived. This is applied to
analyse dissipation and decoherence in the evolution of both a Gaussian and
a Schrödinger cat initial state. Dependence on the diffusive terms present in
the master equation is discussed with reference to both the coordinate and
momentum representations.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The connection between quantum dissipation and decoherence is a topic of longstanding
interest [1–9]. The main systems analysed in this perspective are the damped harmonic
oscillator, two level systems and quantum Brownian motion. For such systems the Hamiltonian
description is not appropriate, and the most successful results come from the reduced
description of a particle interacting with some type of reservoir [10]. Classical understanding
of the phenomenon is well established, relying on Langevin or Fokker–Planck equations
obtained by considering a particle interacting with a bath of independent oscillators [11]. The
quantum counterpart of classical Brownian motion, however, has only recently been cast into
standard equations [12, 13].

Several approaches have been followed in order to obtain a quantum description of the
dynamics of the Brownian particle:

• a model-reservoir approach, leading to the famous Caldeira and Leggett master equation,
which assumes the particle to be coupled to an environment described by a collection of
simple harmonic oscillators [1, 2], and into which suitable terms can be added in order to
produce a satisfactory Markovian equation of the required Lindblad form [3, 4],
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• a dynamical approach modelling more closely the random collisions between the
Brownian particle and the particles that make up its surrounding environment [5–7],

• a measurement-based approach focusing on the information about the Brownian particle
carried away by the particles of the medium during the collisions. This information is
available, at least in principle, by monitoring the environment particles [8, 9, 12, 13].

The property of complete positivity, to be satisfied by a master equation for the reduced
density operator of the particle, is a useful and stringent requirement in the study of
subdynamics in quantum mechanics [14]. The various approaches are described in [12],
where the results obtained with the different methods are discussed. Of particular relevance
is whether or not the proposed master equations are Markovian and of Lindblad form.

Here, the approach that we use to describe the quantum Brownian particle dynamics is the
measurement-based one found in [12, 13, 15]. The collisions with the surrounding particles
are considered to perform a random sequence of measurements feeding information about
the position and momentum of the Brownian particle into the environment. Even if both
of these quantities cannot be known with total precision at the same time, it is possible to
simultaneously measure position and momentum by introducing some degree of imprecision
for both. Using non-quantum-limited measurement techniques to represent the acquisition
of this information [16] has led to the following master equation, in the limit of frequent
collisions which make very weak joint measurements of position and momentum [12]:

dρ̂

dt
= − i

h̄

[
p̂2

2M
, ρ̂

]
− iγ

2h̄
[x̂, {p̂, ρ̂}] − Dpp

h̄2 [x̂, [x̂, ρ̂]] − Dxx

h̄2 [p̂, [p̂, ρ̂]]. (1)

This equation is of the required Lindblad form provided that

DppDxx � (h̄γ /4)2. (2)

Here M is the mass of the Brownian particle, γ is the damping coefficient while Dpp and Dxx

are the diffusion coefficients given by

Dpp = γ
[
MkBT +

m

M
(�σp)2

]
+

Rh̄2

8(�σx)2 , (3)

and

Dxx = Rh̄2

8(�σp)2 . (4)

The particles forming the environment have mass m,R is the average rate of collisions and
�σp and �σx represent the increase in the standard deviations due to the measurements of
position and momentum over and above the intrinsic variances [12].

Satisfaction of the condition of equation (2) using equations (3) and (4) ensures that the
master equation is of Lindblad form. The existence of analogous master equations obtained by
other approaches, but with different expressions for Dpp and Dxx [9, 10], has been described in
[12]. The Caldeira–Leggett master equation [1] is Markovian but is not of Lindblad form and
this has been shown to lead to serious difficulties including, in particular, negative probabilities
[13, 17, 18]. These problems do not arise for equation (1) because of the presence in Dpp

of two new terms other than the temperature-dependent one, γMkBT . These depend on the
variances �σp and �σx, and in particular the presence of a new double commutator term
representing a position diffusion regulated by Dxx . The origin of these terms is the inherent
spreading in position(momentum) which occurs when a measurement of momentum (position)
is made. This point has been discussed further in [13].

The main aim of this paper is an analysis of the decoherence dynamics associated with
equation (1). In particular, we find the exact solution of the master equation, and then use
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this to illuminate the role of both the Dpp and the hitherto largely unconsidered Dxx terms in
dissipation and decoherence. To this end, we will consider two initial states for the Brownian
particle: a single Gaussian wave packet and Schrödinger cat state. By way of comparison we
also consider cases where Dpp and Dxx can be varied independently, which can, for example,
furnish the Caldeira–Leggett dynamics when Dpp = γMkBT and Dxx = 0.

The paper is organized as follows. In section 2, we solve the master equation, providing
a general scheme for obtaining time evolution from general initial conditions. In section 3,
we apply this scheme to two initial configurations and discuss their dynamical evolution.
In section 4, we briefly consider what happens when the Lindblad condition given by
equation (2) is not satisfied. In section 5, we summarize and discuss our results. In appendices
A and B we collect some of the lengthier calculations.

2. Solution of the master equation

In this section, we solve the master equation by introducing a characteristic function. This
procedure has been previously used to obtain a formal solution of the Caldeira–Leggett master
equation and is described, for example, in [19]. The main difference here is that there is an
additional term depending on the position diffusion Dxx .

In the position representation equation (1) takes the form

∂ρ(x, x ′, t)
∂t

=
[

ih̄

2M

(
∂2

∂x2
− ∂2

∂x ′2

)
− iγ

2
(x − x ′)

(
∂

∂x
− ∂

∂x ′

)
− Dpp

h̄2 (x − x ′)2

− Dxx

(
∂2

∂x2
+

∂2

∂x ′2 − 2
∂

∂x

∂

∂x ′

)]
ρ(x, x ′, t), (5)

where ρ(x, x ′, t) = 〈x|ρ|x ′〉. This second-order linear partial differential equation can
be greatly simplified by moving to a (k,�t) representation [20] based on introducing the
characteristic function ρ(k,�t , t):

ρ(k,�t , t) = tr(D̂ρ̂) = tr(exp[i(kx̂ + �tp̂)]ρ̂) =
∫ +∞

−∞
dx eikxρ

(
x +

h̄�t

2
, x − h̄�t

2
, t

)
.

(6)

In this new representation we obtain a first-order partial differential equation in the form

∂ρ(k,�t , t)

∂t
=

[
k

M

∂

∂�t

− γ�t

∂

∂�t

− Dpp�2
t − Dxxk

2

]
ρ(k,�t , t). (7)

In appendix A, the method of characteristics [21] is used to solve this partial differential
equation exactly. The solution is

ρ(k,�t , t) = ρ

(
k,�t(1 − �) +

k

γM
�, 0

)
exp

{[
−

(
Dxx +

Dpp

M2γ 2

)
t +

Dpp

M2γ 3

(
�2

2
+ �

)]
k2

− Dpp�2

Mγ 2
k�t − Dpp�(2 − �)

2γ
�2

t

}
, (8)

where �0 = �t(1 − �) + k
γM

� and � = 1 − exp(−γ t).
We can use equation (6) and its inverse to move to and from the coordinate and

(k,�t) representations at will, and equation (8) to obtain the time evolution in the (k,�t)

representation. This allows us to compute the time evolution of a general initial state in the
position representation by following the procedure:

ρ(x, x ′, 0) → ρ(k,�0, 0) → ρ(k,�t , t) → ρ(x, x ′, t). (9)
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In the next section, we will use this procedure to solve the master equation for two initial
states which can be written in the coordinate representation as a sum of exponential terms of
the form

ρ(x, x ′, 0) = exp[−A0(x − x ′)2 − iB0(x − x ′)(x + x ′)
−C0(x + x ′)2 − iD0(x − x ′) − E0(x + x ′) − F0]. (10)

We here apply the scheme outlined by equation (9) to obtain the time evolution for states of
this kind. Using equations (6) and (8) we find the characteristic function at time t in the (k,�t)

representation to be

ρ(k,�t , t) = exp
[−atk

2 − ibtk�t − ct�
2
t − idtk − iet�t − ft

]
, (11)

where the various coefficients follow the time evolution given by

at = a0 + b0
�

Mγ
+ c0

(
�

Mγ

)2

+

(
Dxx +

Dpp

M2γ 2

)
t − Dpp

M2γ 3

(
�2

2
+ �

)
,

bt = b0(1 − �) + c0
2�(1 − �)

Mγ
+

Dpp�2

Mγ 2
, ct = c0(1 − �)2 +

Dpp�(2 − �)

2γ
,

dt = d0 + e0
�

Mγ
, et = e0(1 − �), ft = f0,

(12)

and where the relation between small and capital coefficients is given by

a0 = 1

16C0
, b0 = − B0

4C0
h̄, c0 = 4A0C0 + B2

0

4C0
h̄2, d0 = E0

4C0

e0 = 2C0D0 − B0E0

2C0
h̄, exp(−f0) = exp(−F0) exp

(
− E2

0

4C0

)
1

2

√
π

C0
.

(13)

Transformation back to the coordinate representation equation (11) provides the density
matrix

ρ(x, x ′, t) = exp[−At(x − x ′)2 − iBt(x − x ′)(x + x ′)
−Ct(x + x ′)2 − iDt(x − x ′) − Et(x + x ′) − Ft ], (14)

with the following relationships:

At = 4atct − b2
t

4h̄2at

, Bt = − bt

4h̄at

, Ct = 1

16at

, Dt = 2atet − btdt

2h̄at

,

Et = dt

4at

, exp(−Ft) = exp(−ft )

2
√

πat

exp

(
− d2

t

4at

)
.

(15)

The inverse relations can also be found:

at = 1

16Ct

, bt = − Bt

4Ct

h̄, ct = 4AtCt + B2
t

4Ct

h̄2, dt = Et

4Ct

et = 2CtDt − BtEt

2Ct

h̄, exp(−ft ) = exp(−Ft) exp

(
− E2

t

4Ct

)
1

2

√
π

Ct

.

(16)

For density matrices which correspond to superpositions of states centred on different
positions, each of which is individually of the form given by equation (10), the linearity of
equation (7) means that it is still possible to follow the procedure described by equation (9)
and so to compute the time evolution.
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3. Applications

In this section, we consider two physically interesting initial states, the simple Gaussian wave
packet and a superposition of two such states, which forms a Schrödinger cat state. Using the
procedure described in the preceding section to compute their time evolution, we focus on the
role of the momentum and position diffusion terms, proportional to Dpp and Dxx , respectively.
In particular, many of our results will be expressed in terms of these coefficients and will not
depend on their explicit form (equations (3) and (4)) in terms of the physical parameters of the
system. These results have a general validity, therefore for any master equation with the same
form as equation (1) irrespective of the sizes of the diffusion terms. Thus, our method does not
just provide the solution to equation (1), but also an infinity of other master equations whose
diffusion terms do not necessarily satisfy the Lindblad condition (equation (2)). One particular
example is the Caldeira–Leggett master equation obtained by putting Dpp = γMkBT and
Dxx = 0.

3.1. Single Gaussian wave packet

Consider a minimum uncertainty Gaussian wave packet centred at position x0 = 0 and
momentum p0, with initial spreads in position and momentum �x0 and �p0 which satisfy the
uncertainty principle �x0�p0 = h̄

2 ,

ρ(x, x ′, 0) = 1√
2π�x2

0

exp

[
− (x − x ′)2

8�x2
0

− (x + x ′)2

8�x2
0

+ i
p0(x − x ′)

h̄

]
. (17)

By comparing this initial reduced density matrix with equation (10) at t = 0 we can identify
the required coefficients as

A0 = C0 = 1

8�x2
0

, B0 = E0 = 0,

D0 = −p0

h̄
, exp(−F0) = 1√

2π�x2
0

.
(18)

By using equation (6) we can obtain the corresponding initial condition in the (k,�t)

representation, which has the exponential form of equation (11) for t = 0 with

a0 = �x0
2

2
, b0 = 0, c0 = �p0

2

2
,

d0 = 0, e0 = −p0, f0 = 0.

(19)

From equation (12) we next compute the time evolution of the various coefficients, and
then return to the coordinate representation using equations (14) and (15). Thus, we
obtain the spatial reduced density matrix at time t, from which it is also possible to
obtain the corresponding density matrix in the momentum representation by double Fourier
transformation. The solution provides a simple means of obtaining the time evolution of the
average of x̂ and p̂, and of their variances shown below and plotted in figure 1 for physically
reasonable parameter values,

〈x̂〉t = −dt , 〈p̂〉t = −et , �x2
t = 2at , �p2

t = 2ct . (20)

These equations could equally well be rewritten in terms of the capitalized coefficients using
equation (16), but the evolution is given most simply in terms of the initial conditions using
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Figure 1. Left: the evolution of the average of x̂ and p̂. Right: the evolution of the variances
�xt and �pt . Parameter values (in SI units): M = 5.01 × 10−22, m = 5.01 × 10−26, kB =
1.38 × 10−23, h̄ = 1.06 × 10−34, γ = 1000, R = γM/2m = 5 × 106, T = 300K, p0 =
5.01 × 10−26, �x0 = 0.73 × 10−7,�p0 = 7.26 × 10−28(�σ p)2 = (�σ x)2 = h̄

2 × n, n = 104.
These parameters remain the same in all the following figures.

equation (12). The expectation values become

〈x̂〉t = p0

M

1 − exp(−γ t)

γ
, 〈p̂〉t = p0 exp(−γ t),

�x2
t = �x2

0 +
�p2

0

M2

[
1 − exp(−γ t)

γ

]2

+ 2

(
Dxx +

Dpp

M2γ 2

)
t

− Dpp

M2γ 3

[
(1 − exp(−γ t))2

2
+ 1 − exp(−γ t)

]

�p2
t = �p2

0 exp(−2γ t) + Dpp

[1 − exp(−2γ t)]

γ
. (21)

As would be expected, the diffusions Dpp and Dxx do not affect the mean values of the
position and momentum. Of particular interest, however, is the evolution of the variances,
whose dependence on Dpp and Dxx can be simply found from equation (21) for both short
times (t � γ −1):

�x2
t ≈ �x2

0 + 2Dxxt, �p2
t ≈ �p2

0 + 2
(
Dpp − γ�p2

0

)
t, (22)

and long times (t 	 γ −1):

�x2
t ≈ 2

(
Dxx +

Dpp

M2γ 2

)
t, �p2

t ≈ Dpp

γ
. (23)

Equations (22) and (23) reveal the critical role of Dpp and Dxx . In particular, for small times
�x2

t depends only on Dxx , which shows that the Dxx term has an important role in this time
region.

It is possible to calculate the evolution of the purity, tr(ρ̂2)t , of the initial state of
equation (17). This quantity, bounded by 0 and 1, is related to the linear entropy and is
equal to 1 for pure states. Any difference from 1 means a loss of purity of the state. The
purity of the Gaussian state is plotted in figure 2 as a function of time. The figure shows that
the decoherence process occurs on a time scale much smaller than the relaxation time of the
particle, which is of the order of γ −1. The dynamics of our system are then described by the
particle density matrix time evolution as a rapid transformation from the pure initial state (17)
into a statistical mixture, as is shown in figure 3 in the coordinate representation.

To investigate further the dynamics of this loss of coherence both in x and p space we can
compute the spreads M2

x(t) and M2
p(t), and coherence lengths, Lx(t) and Lp(t), using their

general definition in [22] in terms of traces over the density matrix of the particle:

M2
x(t) = Tr(ρ̂2x̂2) + Tr(ρ̂x̂ρ̂x̂)

Tr(ρ̂2)
− 2

(
Tr(ρ̂2x̂)

Tr(ρ̂2)

)2

, (24)
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Figure 2. Behaviour in time of tr(ρ̂2)t .

Figure 3. Left: absolute value of the initial density matrix (17). Right: |ρ(x, x′, t∗)|, where
t∗ � γ −1. The suppression of the off-diagonal terms reflects the onset of decoherence before
significant spreading has occurred.

L2
x(t) = Tr(ρ̂2x̂2) − Tr(ρ̂x̂ρ̂x̂)

Tr(ρ̂2)
, (25)

with similar expressions for the momentum spread and coherence length. For pure states
ρ̂2 = ρ̂ and therefore both spread and coherence length become equal to the respective width
of the state, e.g. Mx(t) = Lx(t) = �xt . However, in the presence of the interaction the state
of the particle loses its initial purity and the two quantities differ. While Mx(t) gives the
extension of the state, Lx(t) gives the zone inside the state extension, where coherence has
not yet been lost at time t [19].

For an initial Gaussian wave packet the spread Mx(t) corresponds to the width of
the reduced density matrix along the main diagonal, Mx(t) = �xt = ∫

ρ(x, x, t)x2 −( ∫
ρ(x, x, t)x

)2
, while the coherence length Lx(t) gives analogously the width of the reduced

density matrix along the main skew diagonal Lx(t) = ∫
ρ(x,−x, t)x2 − ( ∫

ρ(x,−x, t)x
)2

.
The ratio Lx(t)/Mx(t) gives a dimensionless measurement of the loss of coherence. It is

interesting to note that for an initial Gaussian wave packet [23] this ratio is directly connected
to tr(ρ̂2) and is equal in both the position and momentum representations. This property is
also found in our system where the following relations are obtained

tr(ρ̂2)t = 1 − Slin = Lx(t)

�xt

= Lp(t)

�pt

= h̄/2√
4atct − b2

t

. (26)
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From equations (26) and (20) we obtain

Lx(t)�pt = Lp(t)�xt = h̄

2

√
1

1 − b2
t /4atct

� h̄

2
, (27)

which can be seen as a particular case of the generalized uncertainty relation derived in [22].
The squares of the coherence lengths in the two representations are given by

L2
x(t) = h̄2at/2

4atct − b2
t

and L2
p(t) = h̄2ct/2

4atct − b2
t

. (28)

It is instructive to consider the evolution of the coherence lengths at short times (t � γ −1):

L2
x(t) ≈ �x2

0

[
1 − 2

(
Dpp

�p2
0

− γ

)
t

]
, L2

p(t) ≈ �p2
0

(
1 − 2

Dxx

�x2
0

t

)
, (29)

and for large times (t 	 γ −1):

L2
x(t) ≈ h̄2

4�p2
t

≈ h̄2γ

4Dpp

, L2
p(t) ≈ h̄2

4�x2
t

. (30)

Equations (29) and (30) show the role of Dpp and Dxx in these evolutions, i.e. in the
decoherence process. In particular, for small times the momentum coherence length L2

p(t)

depends only on the position diffusion Dxx , showing again the relevance of this term in this
time region. This behaviour of L2

p(t) can be understood by comparing it with that of L2
x(t)

which, as it is independent of Dxx , also holds in the Caldeira–Leggett model. Indeed, from
equations (29) and (22) we see that asL2

x(t) and �p2
t both depend on the factor

(
Dpp

/
�p2

0−γ
)
,

and the same occurs for L2
p(t) and �x2

t , which both depend on Dxx .

3.2. Schrödinger cat state

The second configuration that we investigate is an initial Schrödinger cat state with a model
wavefunction of the form

ψ(x, 0) = 1√
2
[
1 + exp

(− l2

8σ 2

)]
(2πσ 2)−

1
4

×
{

exp

[
−

(
x − l

2

)2

4σ 2
− i

Mv

h̄
x

]
+ exp

[
−

(
x + l

2

)2

4σ 2
+ i

Mv

h̄
x

]}
, (31)

where σ is the width of two wave packets initially placed at a distance l with one moving towards
the other with an initial velocity v. Such states are interesting because of their potentially long-
range coherence properties and the extreme sensitivity of this to environmental decoherence
[24].

In the absence of any interactions, the behaviour of the diagonal reduced density matrix
elements is given by

ρ(x, x, t) = 1

2
(
1 + exp

[− l2

8σ 2

])√
2π

(
σ 2 + h̄2t2

4M2σ 2

)
{

exp

[
−

(
x − l

2 + vt
)2

2
(
σ 2 + h̄2t2

4M2σ 2

)
]

+ exp

[
−

(
x + l

2 − vt
)2

2
(
σ 2 + h̄2t2

4M2σ 2

)
]

+ exp

[
−x2 +

(
l
2 − vt

)2

2
(
σ 2 + h̄2t2

4M2σ 2

)
]

× cos

[
4Mvσ 2

h̄
+ h̄lt

2σ 2M

2
(
σ 2 + h̄2t2

4M2σ 2

)x

] 
 . (32)
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Figure 4. Free evolution of the diagonal reduced density matrix elements of equation (32). Used
values (SI): l = 4 × 10−7, σ = 0.73 × 10−7, v = 10−4.

This probability distribution is the sum of three contributions. The first two clearly correspond
to a pair of separately expanding (freely spreading) wave packets, while the third term
represents an interference term, responsible for the central peak present in figure 4, which
is a plot of equation (32). This is exactly as would be expected for such undamped
evolution.

In appendix B, the time evolution is computed from the initial state of equation (31) using
both the procedure described in equation (9) and the linearity of equation (7). Along the
x = x ′ diagonal we find

ρ(x, x, t) = 1

2
[
1 + exp

(− l2

8σ 2

)]
2
√

πāt

{
exp

[
− (x + d̄ t )

2

4āt

]
+ exp

[
− (x − d̄ t )

2

4āt

]

+ exp

(
−x2 − |d̄ t |2

4āt

− 2M2v2σ 2

h̄2 − l2

8σ 2

)
cos

|d̄ t |x
2āt

}
, (33)

with the evolution of the various coefficients given in equation (B.4). Equation (33) reduces
to equation (32) in the absence of any interaction, as may readily be verified by substituting
limγ→0 �/γ = t and Dpp = Dxx = 0. This probability distribution is again the sum of
three contributions. In order to investigate the behaviour of the interference term, we compute
the attenuation coefficient Wt [25], defined as the ratio of the factor multiplying the cosine
interference term to twice the geometric mean of the first two terms:

Wt = exp

[
d̄ t

2 + |d̃ t |2
4at

− l2

8σ 2
− 2M2v2σ 2

h̄2

]
. (34)

In the free case Wt = 1 for all times, corresponding to a full coherence. In the presence of
interaction Wt decays quickly, as pictured in figure 5, which shows the rapid destruction of
the interference with time.

By expanding Wt , for small times, in a Taylor series we find

Wt ≈ 1 − Dxx

(
l2

4σ 2
+

4M2v2σ 2

h̄2

)
t. (35)

This equation shows that for very short times the attenuation factor decays with a characteristic
time τD given by

τD =
[
Dxx

(
l2

4σ 2
+

4M2v2σ 2

h̄2

)]−1

. (36)
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Figure 5. Evolution of the attenuation coefficient Wt .

The interaction with the environment leads to the destruction of the interference term. The
initial decay of Wt , which characterizes this, is due solely to the presence of the Dxx term in
equation (1). All of the decoherence occurs on a very short time scale and is due entirely to
this diffusion.

In order to investigate further the dynamics of this loss of coherence in x and p space
we compute the spreads, M2

x(t) and M2
p(t), and coherence lengths, Lx(t) and Lp(t) defined

in equations (24) and (25). By using equation (B.7) we obtain the spatial spread and the
coherence length at time t:

M2
x(t) = 1

8C̄t

+
1

8C̄2
t

{
Ē2

t exp

(
Ē2

t

2C̄t

− 2F̃t

)
− Ẽ2

t exp

(
− Ẽ2

t

2C̄t

− 2F̄t

)

+
[(

Ē2
t − Ẽ2

t

)
cos α − 2Ēt Ẽt sin α

]
exp(−β)

}

÷
{

exp

(
Ē2

t

2Āt

− 2F̄t

)
+ exp

(
D̃2

t

2Āt

− 2F̃t

)
+ exp

(
− D̄2

t

2Āt

− 2F̄t

)

+ exp

(
− Ẽ2

t

2Āt

− 2F̃t

)}
, (37)

and

L2
x(t) = 1

8Āt

+
1

8Ā2
t

{
D̃2

t exp

(
D̃2

t

2Āt

− 2F̃t

)
− D̄2

t exp

(
− D̄2

t

2Āt

− 2F̄t

)

+
[(

D̃2
t − D̄2

t

)
cos α − 2D̄t D̃t sin α

]
exp(−β)

}

÷
{

exp

(
Ē2

t

2Āt

− 2F̄t

)
+ exp

(
D̃2

t

2Āt

− 2F̃t

)
+ exp

(
− D̄2

t

2Āt

− 2F̄t

)

+ exp

(
− Ẽ2

t

2Āt

− 2F̃t

)}
, (38)

where α = (C̄t D̄t D̃t + Āt Ēt Ẽt )/4Āt C̄t + F̄t + F̃t and β = [
C̄t D̄

2
t − C̄t D̃

2
t +

AẼ2
t − Āt Ē

2
t

]/
8Āt C̄t . In order to obtain the same quantities in momentum space we need the

corresponding reduced density matrix. If we perform a double Fourier transform we obtain
ρ(p, p′, t) from ρ(x, x ′, t). The result has the same form as equation (B.7) with the following
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Figure 6. The evolution of the product Lx(t)Mp(t).

substitutions:

Āt → Āt

Zt

, B̄t → −B̄t

Z̄t

, C̄t → C̄t

Zt

,

D̄t → 2h̄
B̄t D̄t + 2Āt Ēt

Zt

, D̃t → −2h̄
B̄t D̃t + 2Āt Ẽt

Zt

, Ēt → 2h̄
B̄t Ēt − 2C̄t D̄t

Zt

,

Ẽt → 2h̄
B̄t Ẽt − 2C̄t D̃t

Zt

, F̄t → F̄t +
ln Zt

2
+ 4h̄2 C̄t D̄

2
t − B̄t D̄t Ēt − Āt Ē

2
t

Zt

,

F̃t → F̃t +
ln Zt

2
+ 4h̄2 C̄t D̃

2
t − B̄t D̃t Ẽt − Āt Ẽ

2
t

Zt

,

(39)

where Zt = 4
(
B̄2

t + 4Āt C̄t

)
h̄2. By using these substitutions in equations (37) and (38) one

obtains the corresponding M2
p(t) and L2

p(t).
These quantities satisfy Mx(0) = Lx(0) and Mp(0) = Lp(0) at the initial time, while

for large times their increase is the same as the corresponding quantities �xt , lx(t),�pt and
lp(t) in equations (23) and (30) found for the single Gaussian wave packet. In particular, it
has been shown that a generalized uncertainty relation holds [22]:

Lx(t)Mp(t) � h̄

2
. (40)

This product is plotted in figure 6 for our cat state, which shows how the uncertainty relation
is satisfied at all times.

4. Unphysical parameter region

As was stated in the introduction, one of the key differences between equation (1) and the
Caldeira–Leggett equation is the presence of the Dxx term. The latter master equation, of
course, is not of the Lindblad type and pathological behaviour has been observed by several
authors [13, 18, 19] if γ is too large or the wave packet width too small (smaller than the
thermal de Broglie wavelength of the object). If we consider the time derivative of the linear
entropy for small times, then we would expect a positive value for an initial pure state, for
which Slin = 0. In our model, we find this time derivative to be

d

dt
Slin

∣∣∣∣
t=0

= − d

dt
tr ρ̂2

∣∣∣∣
t=0

= −2〈 ˙̂ρ〉 = 4

h̄2 �p0
2Dxx +

4

h̄2 �x0
2Dpp − γ, (41)



9448 B Bellomo et al

Figure 7. Behaviour of the derivative of the linear entropy at t = 0 as a function of q.

where the brackets indicate the average over a general state of the Brownian particle and we
have used equation (1) to obtain the last equality. If we use �x0�p0 = h̄

2 , then the positivity
of equation (41) is assured for all possible states only if

DxxDpp �
(

h̄γ

4

)2

. (42)

This is the same condition as that found in [13] by requiring an initial reduction in the
probability of remaining in the initial pure state.

Even if in our model this condition is satisfied by our parameters of equations (3) and (4)
it is interesting to work near the region of its validity. In fact, we can use our master
equation (1) and look for anomalous features when equation (42) is not satisfied. For example,

after substituting Dpp = q
(h̄γ /4)2

Dxx
, we can vary q around one. In figure 7, equation (41) is

plotted as a function of q.
This figure clearly shows that the rate of change of linear entropy is negative at small

times if the Lindblad condition is not satisfied.

5. Conclusions and discussion

In this paper, we have used the Lindblad master equation for Brownian motion found in
[12, 13] to analyse wave packet dynamics. To this end, we have provided a simple and
clear scheme by which we can obtain the exact time evolution starting from general initial
conditions.

We have applied this procedure to find the time evolution of two initial states: the first
in which the Brownian particle is represented by a Gaussian wave packet and the second in
which it is represented by a Schrödinger cat state. In each case, we have provided expressions
for the relevant quantities in both the position and momentum representations. There are
complementary aspects of the two representations, such as generalized uncertainty relations
not found when one focuses only on the spatial features.

We have analysed further the dissipation and decoherence, in particular focusing on the
reduced density matrix evolution in the coordinate representation. We have obtained the
evolution of the wave packet widths and the coherence lengths for both initial conditions and
in both the position and momentum representations. The Gaussian wave packet shows a very
rapid decoherence on a time scale much shorter than the relaxation time of the system. In the
momentum representation this decoherence depends only on the position diffusion coefficient,
Dxx , present in the master equation. The Dxx term is also the only term responsible for the
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increase in the spatial width of the wave packet for small times. The term containing this
coefficient is absent in many previous master equations which have been used to describe
friction and Brownian motion.

The evolution of a Schrödinger cat state without any frictional effects shows coherent
oscillations caused by interference between the two components of the wavefunction. Our
analysis shows that such an interference is damped on time scales again much shorter than
the relaxation time; decoherence is very rapid. We have quantified the decoherence using an
attenuation coefficient for the oscillatory terms. This attenuation coefficient also depends on
Dxx . The results of the computation of generalized variances and coherence lengths show that
for large times these quantities behave in a similar way to the single Gaussian wave packet case
and that a generalized uncertainty relation between variances and coherence lengths holds for
all times.

Finally, we have generalized the system to look at the case where the product of the
diffusion coefficients is not large enough to guarantee that the master equation is of Lindblad
form. Here, we see a clear signature of unphysical behaviour in the linear entropy, which is
associated with probabilities outside the physically meaningful range between 0 and 1.

The measurement-based quantum description of friction illustrated in this paper provides
a general framework for investigating the role that the various terms in the master equation play
in decoherence. It is clear from our analysis that the two extra diffusion terms not associated
with the temperature of the system are necessary to ensure complete positivity of the density
operator at all times. This is consistent with previous work [12, 13]. The minimum sizes
of these terms are governed by an uncertainty relation, in line with their wholly quantum
origin. Diffusion in one observable is associated with localization in the complementary one.
These localizations occur each time a measurement is made. The consequent diffusion, and
in particular that of position, which has no analogue in the Caldeira–Leggett reservoir-based
approach, must be taken account of in any complete quantum description of friction. The
cost of not doing so is illustrated emphatically here; the resultant incomplete equation cannot
describe decoherence correctly, because it is not valid on the short time scales during which
decoherence occurs.

The generality of the measurement-based approach reflects the generality of the Kraus
formalism of quantum measurements on which it is based, which makes no reference to any
particular measurement device. Consequently, the theory presented here is not specific to
any particular frictional or Brownian system. Such a linkage could in principle be found for
particular systems and would amount to an ab initio quantum theory of friction. No such
theory is known at this time.
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Appendix A

In this appendix, we use the method of characteristics [21] to solve the master equation of
equation (7). The first step is to rewrite equation (7) as

1
∂ρ(k,�t , t)

∂t
+

(
γ�t − k

M

)
∂ρ(k,�t , t)

∂�t

= −(
Dpp�2

t + Dxxk
2
)
ρ(k,�t , t). (A.1)
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The curves in the t,�t plane, parameterized by l and defined by the relation

dt

1
= d�t

γ�t − k
M

= dl, (A.2)

are called the characteristic curves of the partial differential equations. Equation (A.2) may
be written as

dt

1
= d�t

γ�t − k
M

= − dρ(k,�t , t)(
Dpp�2

t + Dxxk2
)
ρ(k,�t , t)

. (A.3)

This pair of equations, valid on each characteristic curve, enables a general solution of the
partial differential equation (A.1) to be found as follows. We perform a first integration using
the first equality of equation (A.3), finding one arbitrary constant W :

W = e−γ t

(
�t − k

γM

)
, (A.4)

from which it follows at t = 0

W = �0 − k

γM
, (A.5)

as k is independent of time. Now we perform a second integration using the second equality
in equation (A.3), finding a second arbitrary constant Z:

Z = 1

ρ(k,�t , t)
exp

[
−Dpp�2

t

2γ
− Dppk�t

Mγ 2

] (
�t − k

γM

)− k2

γ
(Dxx+

Dpp

M2γ 2 )

, (A.6)

from which it follows at t = 0

Z = 1

ρ(k,�0, 0)
exp

[
−Dpp�2

0

2γ
− Dppk�0

Mγ 2

] (
�0 − k

γM

)− k2

γ
(Dxx+

Dpp

M2γ 2 )

. (A.7)

By using equation (A.7) in equation (A.6) we find for ρ(k,�t , t)

ρ(k,�t , t) = ρ(k,�0, 0) exp

[
−Dpp

(
�2

t − �2
0

)
2γ

− Dppk (�t − �0)

Mγ 2

]

×
(

�t − k
γM

�0 − k
γM

)− k2

γ
(Dxx+

Dpp

M2γ 2 )

. (A.8)

In order to express �t as a function of �0 we use equations (A.4) and (A.5), finding

�0 = �te
−γ t +

k

γM
(1 − e−γ t ). (A.9)

Substituting the previous expression for �0 into equation (A.8), we finally obtain for
ρ(k,�t , t):

ρ(k,�t , t) = ρ

(
k,�t(1 − �) +

k

γM
�, 0

)
exp

{[
−

(
Dxx +

Dpp

M2γ 2

)
t +

Dpp

M2γ 3

(
γ 2

2
+ �

)]
k2

− Dppγ 2

Mγ 2
k�t − Dpp�(2 − �)

2γ
�2

t

}
, (A.10)

where � = 1 − exp(−γ t).
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Appendix B

In this appendix, we obtain the time evolution of the Schrödinger cat initial state given in
equation (31).

Computing the reduced density matrix ρ(x, x ′, 0) corresponding to equation (31) and
using equation (6) to move to the (k,�t) representation we obtain

ρ(k,�0, 0) = 1

2
(
1 + exp

[− l2

8σ 2

]) {
exp

[
−σ 2

2
k2 − h̄2

8σ 2
�2

0 + i
l

2
k − iMv�0

]

+ exp

[
−σ 2

2
k2 − h̄2

8σ 2
�2

0 − i
l

2
k + Mv�0

]

+

(
exp

[
−σ 2

2
k2 − h̄2

8σ 2
�2

0 − 2Mvσ 2

h̄
k − h̄l

4σ 2
�0

]

+ exp

[
−σ 2

2
k2 − h̄2

8σ 2
�2

0 +
2Mvσ 2

h̄
k +

h̄l

4σ 2
�0

])

× exp

[
−2M2v2σ 2

h̄2 − l2

8σ 2

]}
. (B.1)

The form of this initial condition is of the kind

ρ(k,�0, 0) =
4∑

j=1

ρj (k,�0, 0), (B.2)

where comparing with equation (11) we have for the various coefficients the initial values

a
1,2,3,4
0 = σ 2

2
, b

1,2,3,4
0 = 0,

c
1,2,3,4
0 = h̄2

8σ 2
, d1

0 = −d2
0 = − l

2
, d3

0 = −d4
0 = −i

2Mvσ 2

h̄
,

e1
0 = −e2

0 = Mv, e3
0 = −e4

0 = −i
h̄d

4σ 2
, f

1,2
0 = ln 2

[
1 − exp

(
− d2

8σ 2

)]
,

f
3,4
0 = ln 2

(
1 − exp

[
− d2

8σ 2

])
+

2M2v2σ 2

h̄2 +
l2

8σ 2
.

(B.3)

By using equation (12) it is possible to compute the time evolution of all the coefficients of
the four parts of equation (B.2):

a1,2,3,4
t = āt = σ 2

2
+

h̄2

8σ 2

γ 2

M2γ 2
+

(
Dxx +

Dpp

M2γ 2

)
t − Dpp

M2γ 3

(
�2

2
+ �

)
,

b1,2,3,4
t = b̄t = h̄2

8σ 2

2�(1 − �)

Mγ
+

Dpp�2

Mγ 2
, c1,2,3,4

t = c̄t = h̄2

8σ 2
(1 − �)2 +

Dpp�(2 − �)

2γ
,

d1
t = −d2

t = d̄ t = − l

2
+

v�

γ
, d3

t = −d4
t = d̃ t = −i

(
2Mvσ 2

h̄
+

h̄l

4σ 2

�

Mγ

)
, (B.4)

e1
t = −e2

t = ēt = Mv(1 − �), e3
t = −e4

t = ẽt = −i
h̄l

4σ 2
(1 − �),

f 1,2
t = f

1,2
0 = f̄ t , f 3,4

t = f
3,4
0 = f̃ t .
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Then using equation (15) we can move to coordinate representation obtaining for the reduced
density matrix

ρ(x, x ′, t) =
4∑

j=1

ρj (x, x ′, t) =
4∑

j=1

exp
[−A

j
t (x − x ′)2 − iBj

t (x − x ′)(x + x ′)

−C
j
t (x + x ′)2 − iDj

t (x − x ′) − E
j
t (x + x ′) − F

j
t

]
, (B.5)

where

A1,2,3,4
t = Āt = 4āt c̄t − b̄2

t

4h̄2āt

, B1,2,3,4
t = B̄t = − b̄t

4h̄āt

, C1,2,3,4
t = C̄t = 1

16āt

,

D1
t = −D2

t = D̄t = 2āt ēt − b̄t d̄ t

2h̄āt

, D3
t = −D4t = 2āt ẽt − b̄t d̃ t

2h̄āt

= D̃t ,

E1
t = −E2

t = Ēt = d̄ t

4āt

, E3
t = −E4

t = Ẽt = d̃ t

4āt

, (B.6)

exp
(−F 1,2

t

) = exp(−F̄t ) = exp(−f̄ t )

2
√

πāt

exp

[
− d̄2

t

4āt

]
,

exp(−F 3,4
t ) = exp(−F̃t ) = exp(−f̃ t )

2
√

πāt

exp

[
− d̃2

t

4āt

]
.

Next from the last equation in equation (B.5) it follows that

ρ(x, x ′, t) = exp[−Āt (x − x ′)2 − iB̄t (x − x ′)(x + x ′) − C̄t (x + x ′)2]

×{exp[−iD̄t (x − x ′) − Ēt (x + x ′) − F̄t ] exp[+iD̄t (x − x ′) + Ēt (x + x ′) − F̄t ]

+ exp[−iD̃t (x − x ′) − Ẽt (x + x ′) − F̃t ] + exp[+iD̃t (x − x ′)
+ Ẽt (x + x ′) − F̃t ]}. (B.7)

Along the diagonal we have

ρ(x, x, t) = 1

2
[
1 + exp

(− l2

8σ 2

)]
2
√

πāt

{
exp

[
− (x + d̄ t )

2

4āt

]
+ exp

[
− (x − d̄ t )

2

4āt

]

+ exp

(
−x2 − |d̄ t |2

4āt

− 2M2v2σ 2

h̄2 − l2

8σ 2

)
cos

|d̄ t |x
2āt

}
. (B.8)
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